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Buoyancy-driven variable-density turbulence
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Buoyancy-generated motions in an unstably stratified medium composed of two
incompressible miscible fluids with different densities, as occurs in the variable-
density Rayleigh–Taylor instability, are examined using direct numerical simulations.
The non-equilibrium homogeneous buoyantly driven problem is proposed as a unit
problem for variable density turbulence to study: (i) the nature of variable density
turbulence, (ii) the transition to turbulence and the generation of turbulence by the
conversion of potential to kinetic energy; (iii) the role of non-Boussinesq effects;
and (iv) a parameterization of the initial conditions by a static Reynolds number.
Simulations are performed for Atwood numbers up to 0.5 with root mean square
density up to 50% of the mean density and Schmidt numbers, 0.1 � Sc � 2. The
benchmark problem has been designed to have the largest mass flux possible and
is, in this configuration, the maximally unstable non-equilibrium flow possible. It is
found that the mass flux, owing to its central role in the conversion of potential to
kinetic energy, is probably the single most important dynamical quantity to predict in
lower-dimensional models. Other primary findings include the evolution of the mean
pressure gradient: during the non-Boussinesq portions of the flow, the evolution of the
mean pressure gradient is non-hydrostatic (as opposed to a Boussinesq fluid) and is
set by the evolution of the specific volume pressure gradient correlation. To obtain the
numerical solution, a new pressure projection algorithm which treats the pressure step
exactly, useful for simulations of non-solenoidal velocity flows, has been constructed.

1. Introduction
Many turbulent flows involve mixing between fluids with very different densities.

Even if the fluids participating in the mixing are incompressible, the resulting velocity
fields, owing to the change in the specific volume accompanying molecular mixing,
are not divergence free. We refer to such flows as variable-density (VD) flows. VD
flows occur in a variety of engineering applications such as the mixing of shear layers
between two gases of different densities, e.g. hydrogen and oxygen, or buoyantly
driven situations in which there is a body force that causes the interpenetration of
two fluids as occurs in the Rayleigh–Taylor (RT) and Richtmyer–Meshkov instabilities
(Cabot & Cook 2006). More complex flows involving combustion in low- or high-
speed flows (scram and ramjets) fall into this class, as do many flows of chemical
engineering interest (Givi 1989). Here, we consider a simple form of multimaterial
mixing (Besnard et al. 1992) which involves two fluids with different densities for
which the individual mass fractions can be recovered from the density.

The properties of the turbulence, when it has been studied in such flows, are usually
obscured by the presence of inhomogeneities due to edge effects and/or walls. The
current investigation focuses on the nonlinear dynamics and statistics of buoyantly
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driven turbulence by considering the statistically homogeneous problem. As such,
the effects of the new nonlinearities due to large density variations in the advective
terms of the Navier–Stokes equations are studied in the absence of complicating
inhomogeneities. The problem is an extension to the variable-density case of the
buoyancy-generated turbulence in a Boussinesq fluid studied by Batchelor, Canuto &
Chasnov (1992). The subject of this paper differs in several fundamental ways. Here,
the high-Atwood-number variable-density problem, not the Boussinesq problem, is
treated. Energy budgets for the second-moment equations and the effect of Schmidt
number are also studied. A portion of the current problem is addressed, in fact, in
Sandoval (1995). Like Sandoval, Clark & Riley (1996), Cook & Dimotakis (2001)
and Ristorcelli & Clark (2004), our interest here is in the statistics of the fluctuating
velocity field. In a companion paper (Livescu & Ristorcelli 2007), the focus will be
on the scalar field and the material mixing.

The current paper treats low-speed flows in which the turbulent Mach number is
small and the fluids participating in the mixing are incompressible. Owing to large
density differences, the fluid is not amenable to the Boussinesq approximation, and the
velocity field, unlike Batchelor et al. (1992), is not solenoidal. For such a flow, the term
variable density (VD) is used to distinguish it from the Boussinesq approximation in
which the densities of the fluids participating in the mixing are similar and density
variations in the momentum equations, except in the buoyancy term, are negligible.
The primary non-dimensional parameter characterizing variable-density effects is the
Atwood number:

A =
ρ2 − ρ1

ρ2 + ρ1

⇒ ρ2

ρ1

=
1 + A

1 − A
, (1)

where ρ2 is the pure fluid density of the heavy fluid. The Atwood number ranges from
0 to 1. For air interpenetrating helium, for which the density ratio is ρ2/ρ1 ≈ 7, the
Atwood number is A ≈ 0.75. For air and hydrogen, A= 0.85. Similar Atwood numbers
occur for mixing between liquid hydrocarbons and air. In contrast, the Boussinesq
approximation, for which the mean pressure gradient is hydrostatic, corresponds to
A → 0.

In VD buoyantly driven flows, unlike the Boussinesq approximation, the mean
pressure gradient is a dynamically evolving quantity coupled to the mixing. In many
turbulent flows of engineering interest, the mean velocity gradient is responsible
for converting the kinetic energy of the mean flow to the turbulence. In the flow
considered here, the primary production mechanism, for both the transitional and
turbulent phases, is buoyancy, and kinetic energy is produced by conversion of
potential energy by the mass flux, 〈ρui〉, where ρ and ui are density and velocity
fluctuations and angle brackets denote the average. The mass flux is responsible for
the conversion of potential energy to kinetic energy which in turn determines the
mixing rate which feeds back to the mass flux. Since the mass flux dictates the energy
conversion rate, it is also related to the growth of the RT mixing layer as observed by
Cook, Cabot & Miller (2004). Thus, even if the mass flux makes a small contribution
to the normal Favre Reynolds stresses, as is the case here, the mass flux is the keystone
of the buoyantly driven variable-density flows. While ‘mass flux’ connotes advection
of density, it should be kept in mind that in this flow the mean density gradient is
zero and mass is advected.

The proposed buoyantly driven statistically homogeneous study is a unit problem
for studying the additional cubic (as well as quadratic) nonlinearities in the Navier–
Stokes equations and the mixing arising from the strong coupling of velocity and
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density fluctuations. The fluid physics we investigate occur, more generally, in rapidly
accelerating flows composed of different density fluids. It is, in all such cases, the
mean pressure gradient that drives the turbulence and the mixing.

The moment equations for this problem are, except for the inhomogeneous flux
terms, identical to those describing turbulence in the RT mixing layer. Summaries of
RT simulation studies can be found in the overviews of Dalziel, Linden & Youngs
(1999) and Young et al. (1999) and references therein. Additional commentary may
be found in Ristorcelli & Clark (2004). The inhomogeneous RT transport terms are
important at the edge of the layer and thus, in principle, the current homogeneous
simulations describe the core of a fully developed (wide) RT layer after a time at
which enough mixing occurs such that little pure fluid attains the centreline. This can
be inferred by inspection of the centreline density kurtosis given in Ristorcelli & Clark
(2004). In addition, the current simulations contain the essential nonlinear features
of the RT problem that give rise to: (i) the cascade of energy; (ii) the conversion of
potential to kinetic energy by the mass flux; (iii) the decrease of the mean specific
volume by mixing; and (iv) the increase of the integral length scale. The simulations
have been motivated by the absence of data relevant to moment closures or large-
eddy simulation (LES) developments in VD turbulence that capture the core of the
nonlinear coupling between material mixing and the hydrodynamical field in the
absence of the complicating issues of spatial transport. From an engineering point of
view, any model for the turbulence and mixing in general variable-density flows must
be capable of simulating the dynamics of this simple buoyantly driven VD turbulence.

1.1. Highlights of this study

In this paper, we look for and describe new physics that might be seen in VD
turbulence. As such, this paper is to be considered exploratory in intent: there is
simply not much known about VD turbulence. Our study contributes to several
important areas.

(a) A study of the mass flux and the role it plays in the conversion of potential
energy to kinetic energy.

(b) That the mean pressure gradient is, in VD turbulence, a dynamically evolving
quantity that is coupled to the mixing as manifests itself in its Schmidt-number
dependence.

(c) The identification of a static or initial buoyancy Reynolds number that
parameterizes the initial conditions of this flow as well as the RT problem.

(d) An improved numerical algorithm for non-solenoidal flows due to active scalar
mixing.

In addition to insights into the physics of VD turbulence, an archival database is
provided to test reduced degree-of-freedom models. The material mixing in this flow
is treated in a companion paper (Livescu & Ristorcelli 2007).

1.2. Plan of the paper

The first portion of the paper sets up the DNS problem and then also shows that,
owing to homogeneity, there is a non-uniqueness to the problem. This is solved by
choosing a mean volumetric velocity such that growth of the mass flux is maximized.
A discussion of the initial conditions and attendant details is then given. The longest
results section, §4, focuses on the diagnostic metrics of the flow. Issues related to its
VD nature, its highly non-equilibrium characteristics, the Reynolds numbers, and the
potential to kinetic energy conversion are amplified.
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2. Problem formulation
The governing equations, special strategies necessary for the numerical solution, and

well-posedness issues are presented. In resolving the well-posedness issues, the mean
velocity is chosen to maximize the mass flux. Therefore the simulations presented, as
explained below, represent the maximally non-equilibrium flow.

2.1. Governing equations

The physical problem is the mixing of two incompressible fluids with different
densities, ρ1 and ρ2. The mathematical model is provided by the Navier–Stokes
equations and species mass fraction transport equations. The density of the mixture
varies depending on the amount of each fluid in the mixture:

ρ =
1

Y1/ρ1 + Y2/ρ2

, (2.1)

where Y1 = Y1(x, t) and Y2 =Y2(x, t) are the mass fractions, and Y1 + Y2 = 1. The
species mass fraction transport equations, assuming Fickian diffusion, are:

(ρYα),t + (ρYαuj ),j = (ρD0Yα,j
),j . (2.2)

Summing over α = 1, 2, leads to the continuity equation (see below). The change in
the specific volume, 1/ρ, owing to mixing, leads to non-zero divergence of velocity:

uj,j = −D0 ln ρ,jj (2.3)

which can be derived from (2.1)–(2.2) (see Sandoval 1995; Cook & Dimotakis 2001).
D0 is the diffusion coefficient and is assumed constant.

After non-dimensionalizing with ρ0 = 0.5(ρ1 + ρ2), a reference velocity, U0, and a
reference length, L0, the governing equations become:

ρ∗
,t + (ρ∗u∗

j ),j = 0, (2.4)

(ρ∗u∗
i ),t + (ρ∗u∗

i u
∗
j ),j = −p∗

,i + τ ∗
ij,j +

1

Fr2
ρ∗gi, (2.5)

u∗
j,j = − 1

Re0Sc
ln ρ∗

,jj , (2.6)

with τ ∗
ij =(1/Re0) (u∗

i,j + u∗
j,i − (2/3)u∗

k,kδij ). Note that VD introduces additional
nonlinearities in the governing equations besides the quadratic terms present in
constant density Navier–Stokes equations. There are new cubic terms in the
momentum equations and the divergence of velocity in terms of the logarithm of
the density.

The primary dependent variables are the density ρ∗, velocity in the xi-direction u∗
i ,

and pressure p∗. The superscript ∗ is used to denote total instantaneous (mean
plus fluctuation) values. The non-dimensional parameters in (2.4)–(2.6) are the
computational Reynolds number, Re0, Schmidt number, Sc, and Froude number, Fr:

Re0 = ρ0L0U0/µ0, (2.7)

Sc = µ0/ρ0D0, (2.8)

Fr2 = U 2
0 /gL0, (2.9)

with g, the magnitude of the acceleration due to gravity, taken to be constant.
Here, gi are the components of the unit vector in the direction of gravity. In the
above non-dimensionalization, the reference scales L0 and U0 are not specified. A
physically meaningful choice, which collapses the data will be provided later. The
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dynamic viscosity µ0 is assumed constant and is the same for both fluids. In the
equations above, the non-dimensional instantaneous density varies between 1 − A(t)
and 1 + A(t) where A(t) is the instantaneous Atwood number.

Equations (2.4)–(2.6) are those governing the flow generated by the VD RT
instability (e.g. see Sandoval 1995; Cook & Dimotakis 2001). In this study, the
equations are solved in a triply periodic domain, corresponding to a statistically
homogeneous flow. Consistently, the averages are calculated as volume averages.
Such a configuration eliminates the complications due to the presence of non-periodic
boundaries while allowing fundamental studies of turbulence with buoyancy and VD
effects in the context of mixing between initially segregated materials. Physically,
the flow corresponds to the inner region of a fully developed RT mixing layer. For
modelling, this is a benchmark problem which any turbulence model for the VD RT
should handily predict. In flow physics this benchmark problem allows us to study the
peculiar nature of the mixing between two different density fluids. There are several
phenomena that distinguish the VD fluid from a Boussinesq fluid. These differences
are highlighted throughout the text and in the Appendix.

In the subsequent sections capital roman letters, overbars and angle brackets are
used to denote mean values. Angle brackets are preferred for longer expressions
whereas overbars are used for quantities denoted by Greek letters. Lower case letters
(Roman or Greek) or primes are used to denote fluctuations. As the density is not
spatially uniform, some of the results will be presented using density-weighted (Favre)
averages, denoted with a tilde, and the corresponding fluctuations with double primes.
Thus, the instantaneous velocity, density, pressure and specific volume are decomposed
as u∗

i =Ui + ui = Ũi + u′′
i , ρ∗ = ρ + ρ, p∗ = P + p and v∗ = V + v, respectively. Note

that Ũi − Ui = ui − u′′
i = ai . The definitions for the normalized mass flux, ai , Favre

Reynolds stresses, Rij , and turbulent kinetic energy, k̃, and total kinetic energy, EK ,
are given below:

ai =
〈uiρ〉

ρ̄
= −〈u′′

i 〉, (2.10)

Rij = 〈ρ∗u′′
i u

′′
j 〉 = ρ̄〈uiuj 〉 − ρ̄aiaj + 〈ρujuj 〉, Rkk = 2ρ̄k̃, (2.11)

EK = 〈ρ∗u∗
i u

∗
i 〉/2. (2.12)

In this homogeneous VD flow, as will be shown, the mean velocity is zero. Unlike
constant-density flows, the two first-order moments, the mean pressure gradient, P,i ,
and the mean specific volume, V , are dynamical variables evolving as the mixing
proceeds.

2.2. Well-posedness and the mean pressure gradient

The governing equations are translationally invariant. As a consequence, any statistical
quantity formed from the dependent variables is invariant under translation and the
flow remains statistically homogeneous if the initial conditions are consistent with
the periodic boundary conditions. To solve the equations, the pressure is determined
from a Poisson equation (see Appendix A). Because of periodicity, the mean pressure
gradient is determined only up to an arbitrary constant. As a consequence, ∇P is
a dynamical variable to which an arbitrary constant can be added. Note that the
addition of a constant mean pressure gradient to the momentum equations does not
change its translational invariance. All other statistics are constant in space, consistent
with statistical homogeneity.
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Given that ∇P can be determined to an arbitrary constant, the question is what
is the mean pressure gradient which gives the maximally unstable turbulence? Two
constraints are imposed to fix the mean pressure gradient: (i) that for each direction
i, giUi,t � 0 and (ii) the time derivative of the mass flux attains its maximum absolute
value. The potential is converted to kinetic energy by the mass flux (as will be shown).
Therefore, the second constraint ensures the fastest energy conversion and the flow
obtained will be the most non-equilibrium flow possible.

Mathematically, the first constraint requires that the first and last terms in the
equation

Ui,t = 〈uiuj,j 〉 − 〈vp,i〉 + 〈vτij,j 〉 − V P,i +
1

Fr2
gi (2.13)

have the same sign. In other words, the mean velocity magnitude cannot decrease if
it is generated by buoyancy.

The second constraint requires that the time derivative of the mass flux

〈ρui〉,t = −〈ρv〉P,i − ρ(〈uiuj,j 〉 − 〈vp,i〉 + 〈vτij,j 〉) (2.14)

attains its maximal absolute value, |〈ρui〉,t | = |〈ρui〉,t |max.
Equation (2.13) is the average of the instantaneous velocity equation

u∗
i,t = −ujui,j − 1

ρ∗ (p,i + P,i − τij,j ) +
1

Fr2
gi, (2.15)

which is obtained from (2.5) after dividing by ρ∗ and applying the Reynolds
decomposition. Integration by parts and homogeneity were used to obtain the first
term on the right-hand side of (2.13). Equation (2.14) is derived from (2.5) after
decomposing ρ∗ = ρ + ρ, eliminating (ρui),t with the use of the continuity equation
(2.4) and (2.15), and taking the average.

The two constraints above determine the mean pressure gradient. First, note that the
averaged continuity equation is ρ,t = 0 and ρ = 1. The Schwartz inequality requires:

(
1

V

∫
V
ρ∗ dV

)1/2(
1

V

∫
V

1

ρ∗ dV
)1/2

�
1

V

∫
V
(ρ∗)1/2

(
1

ρ∗

)1/2

dV = 1, (2.16)

which shows that ρV � 1 and thus 〈ρv〉 = 1 − ρV � 0. Set P,i =1/V (〈uiuj,j 〉 −
〈vp,i〉 + 〈vτij,j 〉 + 1/Fr2gi − εi). Here, εi is the unknown time derivative of the mean
velocity, Ui,t , and can have positive or negative values. The right-hand side of the mean
velocity equation (2.13) can have the sign of gi only when εigi � 0 (no summation
over i). From constraint (ii), since 〈ρv〉 � 0, we find that εigi � 0 (no summation),
which leaves only εi = 0. The mean pressure gradient that satisfies the two constraints
can only be:

P,i =
1

V

(
1

Fr2
gi − 〈vp,i〉 + 〈uiuj,j 〉 + 〈vτij,j 〉

)
, (2.17)

and Ui,t = 0. The first two terms dominate the right-hand side of (2.17); thus the
VD deviation of the pressure gradient from hydrostatic is set by the specific volume
pressure gradient correlation. The same mean pressure gradient was used by Sandoval
et al. (1996). Equation (2.17) shows that, unlike the Boussinesq case, the mean pressure
is a dynamical quantity. For an RT flow, the mean pressure gradient is set by the non-
periodic boundary conditions and, for the VD case, is a dynamical quantity changing
with the mixing. Ui,t ≈ 0 also occurs in the high-Reynolds VD RT simulation of
Cabot & Cook (2006) so that the maximally unstable configuration chosen here is
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close to the RT situation. For the triply periodic case, we could, in principle, choose
a mean velocity such that the mean pressure gradient is equal to the hydrostatic
pressure head. In this case, which corresponds to a less non-equilibrium flow, the
mean velocity is not constant, but a dynamical variable changing with the mixing.

The Galilean invariance of the governing equations allows a reference frame moving
with any constant velocity to be chosen. Choosing Ui = 0 requires the following
constraint between the mean and fluctuating momentum

0 = Ui =

〈
ρ∗u∗

i

ρ∗

〉
= V 〈ρ∗u∗

i 〉 + 〈v(ρ∗u∗
i )

′〉

= V 〈ρ∗ui〉 + 〈v(ρ∗ui)
′〉, (2.18)

which must be satisfied as the equations are numerically integrated.
In summary, the governing equations describing VD buoyantly driven turbulence

are (2.4)–(2.5) with Ui = 0, u∗
i = ui and the mean pressure gradient given by (2.17).

The mean pressure gradient appears in the instantaneous pressure term in (2.5).

3. Numerical approach
Equations (2.4)–(2.5) are solved in a triply periodic domain using a pseudo–spectral

algorithm. The derivatives are calculated in Fourier space and the nonlinear terms
evaluated in real space. The numerical algorithm follows that described in Sandoval
(1995) with differences discussed below and detailed in Appendix A. The equations are
integrated in time using a second-order Adams–Bashforth method. In order to impose
the condition Ui =0 at each time step, the fluctuating momentum equation (A 2) is
time integrated and at each time step the mean momentum, 〈ρ∗ui〉, is calculated from
(2.18). In contrast, Sandoval (1995) integrates both the fluctuating and the mean
momentum equation, which enforces the condition Ui = 0 only to the order of the
method.

The momentum equations (A 2) are time advanced using the pressure projection
method in two steps: first without the pressure terms and then adding these terms
to restore the correct divergence of velocity. For the incompressible case, it can be
shown (see Karniadakis, Israeli & Orszag 1991) that the temporal treatment of the
projection step is exact and the temporal accuracy of the overall method is determined
by the first step. Because of the non-zero divergence of velocity, the pressure equation
contains unknown terms which must be evaluated at the next time step. This problem
occurs in all VD flows and was also encountered in the RT configuration (Cook &
Dimotakis 2001). To close these unknown terms, usually (Sandoval 1995; Cook &
Dimotakis 2001; Jang & de Bruyn Kops 2007) a second-order extrapollation of data
from previous time steps is used. Such an approximation introduces additional errors
in the velocity field and could, in principle, constrain the overall order of accuracy or
affect the mass conservation. An equation for pressure which does not require further
approximations, and ensures that the divergence equation (2.6) is exactly satisfied, is
derived in Appendix A.

The evaluation of the nonlinear terms in real space introduces aliasing errors; these
errors are controlled in two ways. First, by removing the energy in the wavenumbers
k � N/3 where N is the number of grid points. This completely eliminates the aliasing
errors for quadratic products. For the other nonlinearities present in the governing
equations, the aliasing errors are controlled by ensuring that the amount of energy in
the wavenumbers affected by aliasing is small.
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Case A 1/Fr2 Sc Re0 Reb0

〈ρ2〉
ρ2 |t=0 Resolution

1Base 0.05 1.0 1.0 250 11 0.0024 2563

1Fr 0.05 10.0 1.0 250 35 0.0024 2563

1Re1 0.05 1.0 1.0 833 37 0.0024 2563

1Re2 0.05 1.0 1.0 1667 73 0.0024 5123

2Sc0 0.25 1.0 0.1 250 26 0.057 2563

2Sc1 0.25 1.0 0.5 250 26 0.057 2563

2Base 0.25 1.0 1.0 250 26 0.057 2563

2Sc2 0.25 1.0 2.0 250 26 0.057 2563

2Re1 0.25 1.0 1.0 833 87 0.06 5123

2Re2 0.25 1.0 1.0 1667 174 0.061 10243

3Sc1 0.5 1.0 0.5 250 37 0.22 2563

3Base 0.5 1.0 1.0 250 37 0.22 2563

3Sc2 0.5 1.0 2.0 250 37 0.22 5123

Table 1. parameters for the DNS cases.

3.1. Initial conditions and simulation cases

The density field is initialized as random blobs of pure fluids. First, a Gaussian random
field with top-hat energy spectrum is generated. The location of wavenumbers with
non-zero energy, kmin � k � kmax, is used to control the initial length-scale of the
density field. For the cases considered kmin = 3 and kmax =5, so that the flows starts
with relatively large density structures. The density field is transformed into physical
space where all negative values are set to the normalized density of the light fluid,
ρ1/ρ0, and all positive values to the normalized density of the heavy fluid, ρ2/ρ0.
The result is a field with mean 1 and double-delta PDF (Eswaran & Pope 1988;
Livescu, Jaberi & Madnia 2002) which is smoothed by applying a filter function to
decrease high wavenumber amplitudes. The physical values of the density are no
longer bounded by ρ1/ρ0 and ρ2/ρ0 and, in order to reduce the difference between
the maximum and minimum values, the field is allowed to go through pure molecular
diffusion before the simulation is started. Thus, a thin diffusion layer is generated
between the two fluids, as can be seen in figure 1, which ensures that all spatial scales
can be accurately solved.

The velocity field is initialized with a zero solenoidal part and dilatational part
given by gradients of the density field:

ui = − 1

Re0Sc
(ln ρ∗),i (3.1)

which satisfies (2.6). Table 1 provides relevant information for the cases studied. For
all cases g = (0, 0, −1). Two Reynolds numbers are given, Re0 and a static buoyancy
Reynolds number Re0b formed from an effective velocity related to the buoyancy
forces and the initial integral scale of the density field. Re0 is a non-dimensional
viscosity as it is changed by changing µ0. The static buoyancy Reynolds number
expresses the ratio of buoyancy and viscous forces at the time g is applied and at a
scale equal to the initial integral scale of the density field, as the velocity is calculated
based on the potential energy corresponding to a height equal to the density integral
scale. The dimensional potential velocity is

√
L0ρ

Ag, with L0ρ
the dimensional initial
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density integral scale, so that

Reb0
=

ρ0

√
L3

0ρ
Ag

µ0

= Re0

√
L3

ρA/Fr2, (3.2)

where Lρ = L0ρ
/L0. In general, as will be seen, the higher Reb0, the larger the maximum

kinetic energy of the flow generated.
The cases described in table 1 were chosen to investigate the influence of the

Atwood, Reynolds, Schmidt and Froude numbers. There are 3 base cases (1Base,
2Base, 3Base) corresponding to the Atwood numbers 0.05 (Boussinesq limit), 0.25
and 0.5. The rest of the cases have one value of the parameters Sc, Re and Froude
numbers changed compared to the base cases. Cases with the same last number in the
name have the same value of the respective changed parameter (i.e. both cases 1Re1
and 2Re1 have Re0 = 833). In addition, the Froude number was changed for case 1Fr
to match A/Fr2 from case 3Base. To reduce statistical variability, each simulation
is repeated several times with initial conditions generated using a different random
number seed. All data presented represent averages over several realizations (typically
5 to 10). Because of the computational expense, the high-Reynolds-number cases
1Re2 and 2Re2 were computed only up to the kinetic energy maxima.

4. Results
4.1. Overview of flow evolution

The initial velocity field is very small magnitude as it is set by the dilatational field. The
dilatational velocity, which is set by the smoothness of the density field, is small for
the simulations considered. Because of the body force the two fluids move in opposite
directions. Small- and large-scale fluctuations in the velocity and density fields are
generated by nonlinear interactions and the fluids in contact molecularly mix. The
amplification of the fluctuating strain field due to buoyancy increases the interfacial
area between the two fluids (figure 2a) and the molecular mixing is accelerated. As
the fluids become molecularly mixed, the viscous forces overcome the buoyancy forces
and the turbulence begins to decay. At some late time (figure 2b) only the relatively
large-scale regions survive; the small-scale density fluctuations have been smoothed
out by molecular diffusion. Buoyancy forces still feed the slowly decaying large-scale
components of the motions, but not enough to overcome the viscous forces and the
turbulence decays.

Figure 3 shows the evolution of the kinetic energy EK = 〈ρ∗uiui〉/2 and summarizes
energetically the birth, growth and decay of buoyantly driven turbulence. The kinetic
energy increases initially as buoyancy forces dominate viscous forces. As the fluids
molecularly mix and the effective Atwood number decreases, the kinetic energy decays.
To compare different cases, the results are plotted in terms of velocity and time scales
characterizing the balance between buoyancy and nonlinear forces:

Ur =
√

AgL0/U0 =

√
A/Fr2, (4.1)

tr =
√

L0/(Ag)/(L0/U0) =

√
Fr2/A. (4.2)

Note that the corresponding dimensional scaling (U0r
=

√
AgL0 and t0r

=
√

L0/(Ag))
does not specify L0, consistent with the absence of an intrinsic length scale in
homogeneous flows. For quantitative comparisons with dimensional experiments, the
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Figure 1. Typical initial density field.

(a) (b)

Figure 2. Typical density field at (a) maximum kinetic energy and (b) late time.

experimental length scale can be chosen to match a certain quantity (e.g. the density
integral scale or Taylor microscale). The scaling above collapses the data better than
the scaling based on the linear stability problem used by Ristorcelli & Clark (2004).
The scales used here are similar to those used by Batchelor et al. (1992) with A

replacing the initial magnitude of the density fluctuations. Note that the present
simulations have similar initial density length scales with only small differences due
to the smoothing of the initial density field performed by diffusion.

Figure 3 shows that the buoyancy forces are larger for higher initial Atwood
and Schmidt numbers or lower Froude numbers, resulting in larger kinetic energy
maxima. For cases 1Fr and 3Base with the same initial Reb0

, the results are close.
Conversely, for cases with higher Re0 (1Re1, 1Re2, 2Re1, 2Re2), the viscous forces
are initially lower and the kinetic energy increases faster and has larger maxima. The
growth of turbulence and the magnitude of the maxima correlate well with the initial
buoyancy to viscous force balance, i.e. Reb0

, as can be seen in a plot of the peak EK
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Figure 3. Time evolution of the turbulent kinetic energy.

versus Reb0
(not shown). In addition, the results seem to indicate that the maximum

EK asymptotes to a constant as Reb0
increases; at larger Reb0

, the change in the
magnitude of the peak is progressively smaller, consistent with the Reynolds-number
effect found in the largest RT simulation to date of Cabot & Cook (2006). The kinetic
energy maxima occur at approximately the same non-dimensional time for all cases
(≈2.5). Figure 3(b) shows, as might be expected, that the higher Sc cases produce a
higher maximum and, unexpectedly, the maximum still peaks at the same time. At
late times, the results obtained are similar for cases with Sc = 1. It is likely that the
late time decay depends on the initial spectrum of the density field (and in particular
its low-wavenumber component), as in the Boussinesq case (Batchelor et al. 1992).

Since buoyancy production is inherently anisotropic, it is expected that the normal
stresses will be anisotropic. A measure of the large-scale anisotropy is the Reynolds
stress anisotropy tensor:

bij =
〈ρ∗uiuj 〉
〈ρ∗ukuk〉 − 1

3
δij , (4.3)

which is bounded by −1/3 � bij � 2/3. The lower bound for a diagonal component
corresponds to no energy in that component and the upper bound, 2/3, to 100%
of the energy in that component. Similar to the RT runs of Ristorcelli & Clark
(2004), the off-diagonal components of anisotropy tensor are zero. Parenthetically,
the Boussinesq eddy-diffusivity closure of the standard k − ε model cannot predict
buoyantly driven flows (Ristorcelli & Livescu 2007).

The vertical component b33 of the anisotropy tensor is shown in figure 4. The initial
dilatational velocity field is isotropic and b33 = 0 at t =0. Since the gravitational force is
applied suddenly at t = 0, b33 rapidly increases as the solenoidal velocity is generated.
At t/tr =0.2, more than 80% of the kinetic energy is in the vertical component.
This is in the range of values obtained for the Boussinesq case by Batchelor et al.
(1992) and slightly less than in the Boussinesq RT simulations of Ristorcelli & Clark
(2004). As the turbulent fluctuations increase, the pressure strain redistributes the
energy among the other normal stresses. In proportion, more energy is dissipated
from R33 by ε33 (not shown). Here, ε33 is the dissipation rate of R33. Although the
mass flux, generating R33, still increases, the rate of growth is reduced by mixing
and is not enough to compensate for the losses (by pressure strain and dissipation,
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Figure 4. Vertical component of the anisotropy tensor.

see (4.8) below). Consequently, the anisotropy decreases. Later, although there is
some statistical variability in the results, b33 seems to asymptote to a constant value,
b33 ∼ 0.25 indicating that about 58% of the kinetic energy resides in the vertical
component. For case 1Base, with the lowest Atwood and Reynolds numbers, the
asymptotic value is similar to the results obtained for the homogeneous Boussinesq
case (Batchelor et al. 1992). However, case 1Base does not appear to be turbulent
as additional aspects to be shown also suggest. Although the statistical variability is
larger for the higher Sc cases, the results suggest that the asymptotic value of b33 is
larger at smaller Schmidt numbers. This is consistent with the faster decrease in the
density contrast at smaller Sc (Livescu & Ristorcelli 2007).

Unlike the kinetic energy, the root mean square (r.m.s.) density fluctuations only
decrease in time. The density intensity defined as the r.m.s. density divided by the
mean density is given in figure 5. The density intensity indicates the importance of
non-Boussinesq effects (and the cubic nonlinearity) to the advective derivative. As
explained in the Appendix, the Boussinesq approximation is obtained as ρ/ρ → 0. If
ρrms/〈ρ〉 < 0.05 is taken to define the Boussinesq limit, then the low-Atwood-number
cases 1Base, 1Fr, 1Re1 and 1Re2 are in this limit from the beginning. The other cases
become Boussinesq-like after the kinetic energy peaks. The non-Boussinesq effects last
longer for cases with higher Reb0

or Sc. If the density r.m.s. is scaled by the initial value,
the long time values collapse for cases with the same Sc when plotted against t/tr ,
so that Sc becomes the only parameter that affects the asymptotic state (not shown).
The intermediate time (non-Boussinesq) behaviour depends in addition on Reb0

.
In the Boussinesq case, the mean pressure gradient is constant in time and equal

to the hydrostatic head (1/Fr2)ρgi . In the VD case, the mean pressure is a dynamical
quantity and evolves as the mixing progresses, as seen in figure 6 and indicated by
(2.17). As the mixing evolves and ρ/ρ̄ → 0, V → 1/ρ̄, the mean pressure becomes
hydrostatic. For all the cases considered, the last two terms in (2.17) are the largest.
Thus, the specific volume pressure gradient correlation, 〈vp,i〉, is primarily responsible
for the non-Boussinesq behaviour of the mean pressure gradient as observed by
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Figure 6. Time evolution of the mean pressure gradient normalized by the pressure head.

Sandoval et al. (1996). After the initial moment, most of energy resides in the
solenoidal component (see below) and the pressure plays a role similar to that in
incompressible flows: it reduces the velocity magnitude in the direction driven by
gravity by transferring energy to the other two components. The pressure gradient
is positive in the rising low-density regions and negative in the falling high-density
regions. Since the specific volume is negatively correlated to the density, it yields that
〈vp,i〉 > 0 (see also § 4.5), and thus in the VD case it increases the pressure head. At
early times when V is largest, the specific volume is larger than 1 and the mean pressure
gradient (2.17) is lower than the hydrostatic value. Later, as V decreases, the mean
pressure gradient becomes larger than the hydrostatic head. P,3 crosses the hydrostatic
pressure value for all cases at about the same time, and before the kinetic energy peaks.

Figure 6 indicates that non-Boussinesq effects are strongly dependent on Atwood
number. Further increase in the non-Boussinesq effects can be obtained by increasing
Re0 or Sc. The current simulations have only moderate Atwood and Schmidt numbers
owing to the large computational resources required to resolve high-Atwood and/or
high- Sc number cases. Even so, the r.m.s. density reaches 50% of the mean density,
showing clear non-Boussinesq effects. Based on the results presented, we conclude
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Figure 7. Time evolution of Ret .

that non-Boussinesq effects, only modestly important at this Atwood number and for
these initial conditions, will be especially important at higher Atwood and Schmidt
numbers.

The turbulent Reynolds number, an indicator of the relative magnitude of the
nonlinear and viscous-diffusion terms, also indicates the bandwidth of the scales
of the turbulence processes. The turbulent Reynolds number, Ret = Re0E

2
K/ε with

ε = −〈uiτij,j 〉 is shown in figure 7. The maximum Ret attained by the flow increases
as Reb0

or Sc increase and varies between 30 for case 1Base to 2380 for case 2Re2.
Note also that if the Reb0 is small enough, there is no distinctive peak in the evolution
of Ret (as happens for case 1) and the flow never fully undergoes transition before
decaying. It is peculiar to see that the decay of energy is such that the turbulent
Reynolds number remains approximately constant. This is also seen, for certain
initial conditions, in the decay of constant density isotropic turbulence (Ristorcelli &
Livescu 2004). Here, it appears to be due to the buoyancy production not stopping
until the fluid is fully mixed.

For non-buoyant flows, nonlinear effects are typically neglected at small Reynolds
numbers and different Fourier components of ρ and ui behave independently and
may be superimposed. For unstable VD flows, depending on the Froude number,
velocity fluctuations can be quickly generated such that the nonlinear interactions
become important. In addition, if the density has large-amplitude perturbations,
nonlinear interactions between various modes occur for even small initial Reynolds
numbers. Consider, for example, that the linear analysis for the RT problem is valid
as long as aκ � 1, where a and κ are the initial amplitude and wavenumber of
the interfacial perturbation (Chandrasekhar 1981). For the viscous case, aκ is also
proportional to the Reynolds number based on κ and interface speed. The initial
conditions considered here correspond to large blobs with Lρκ of order 1, so that the
flow is nonlinear from early times.

It may be useful to report a bulk Reynolds number (Cook & Dimotakis 2001;
Ristorcelli & Clark 2004) to compare the current problem to RT simulations.
We choose the velocity integral scale (which turbulence models are expected to
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compute) as the outer scale of the problem and define the bulk Reynolds number as
Rebulk = (AgL)1/2L/ν. This Reynolds number corresponds to the outer Reynolds
number of Dimotakis (2000). In Boussinesq RT, L ∼ h as demonstrated in
Ristorcelli & Clark (2004) using DNS and a self-similar analysis. The magnitude of
Rebulk is dictated by the initial value of the buoyancy Reynolds number (figure 8). Since
the evolution of Rebulk is dictated by the evolution of L, it decreases at early times for
higher Reb0

cases as the stirring decorrelates the fluid motions. After the kinetic energy
peaks, Rebulk increases monotonically and at late times the rate of growth decreases
as the motions remain confined to the slowly decaying large-scale components of
the motions. The shorter high-Reynolds-number simulations 1Re2 and 2Re2 attain
maximum values of Rebulk of 162 and 302, respectively, before the kinetic energy peaks.

Single-point closures usually assume the validity of Kolmogorov’s ‘zeroth’ law. It is
useful to asses how the velocity integral length scale relates to the length scale l = k3/2/ε

(figure 9). It appears that during the transition process, before the energy maximum is



58 D. Livescu and J. R. Ristorcelli

0 5 10 15
t/tr t/tr

–2

–1

0

case 1Base
case 1Fr
case 1Re1
case 2Base
case 2Sc2
case 2Re1
case 3Base
case 3Sc2

5 10 15 20
–1.0

–0.5

0

(a) (b)

Figure 10. Derivative skewness (a) in the direction of gravity, S3 = 〈u3
3,3〉/〈u2

3,3〉3/2, and (b)

in the horizontal plane, Sh = 1
2

∑
j = 1,2 〈u3

j,j 〉/〈u2
j,j 〉3/2.

reached, the Kolmogorov zeroth law scaling is not useful. The scaling coefficient varies
some two orders of magnitude. The effect appears to be a non-equilibrium effect as well
as a VD effect. The scaling coefficient varies more as the Atwood number is increased.
While many of the quantities presented have asymptotic behaviours that collapse with
the buoyancy scaling, this is not the case with the Kolmogorov scaling coefficient. It
is surprising that the zeroth law does hold, for each individual case, at long time.

The stabilization of the derivative skewness is often taken to indicate the
development of the energy cascade. The derivative skewness varies significantly
initially as the Reynolds number increases through transition. Figure 10 shows the
evolutions of vertical and horizontal velocity derivative skewnesses. As the flow
becomes Boussinesq-like, S3 and Sh reach values similar to those obtained in an RT
layer for a Boussinesq fluid by Ristorcelli & Clark (2004) for all cases, except case
1Base. Note that the low Reb0 case, even if it is Boussinesq from the beginning,
achieves different long-time skewness statistics owing to the very low Reynolds
numbers achieved during the evolution of the flow. This is, perhaps, an example
of flow that does not go fully through transition.

4.2. Energy transfer rates

The rate of conversion of potential energy to kinetic energy is an important feature of
buoyancy-driven flows. The sole mechanism by which the potential energy is converted
to kinetic energy is the mass flux (as will be shown). In more conventional turbulent
flows, the Reynolds stresses contracted on the mean velocity gradient extract energy
from the mean velocity field at large scales and then the energy cascades down to
small scales where it is viscously dissipated. Here, the potential energy of the unstable
stratification is converted into kinetic energy by buoyancy forces. As a consequence,
the kinetic energy is fed at a range of scales (as discussed in Livescu & Ristorcelli 2007).

The available potential energy per unit volume in a volume V for each realization
is given by

E∗
p(t) = − gi

V Fr2

∫
V
(ρ∗ − ρ) xi dV. (4.4)
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Here the non-dimensional elevation xi varies from 0 to 2π in the direction opposite
to gi . E∗

p(t) is the potential energy non-dimensionalized by ρ0U
2
0 . In the fully mixed

state, which corresponds to the stable configuration, E∗
p = 0.

The rate of change of the potential energy is the sum of the time rate of change
of the potential energy inside the control volume and the flux of potential energy
through the boundaries:

E,t = E∗
p,t + FE∗

p
. (4.5)

Using the definition of the potential energy (4.4), E,t can be written as:

E,t = − ∂

∂t

(
gi

V Fr2

∫
V
(ρ∗ − ρ) xi dV

)
− gi

V Fr2

∫
S

uj (ρ
∗ − ρ) xidSj

=
gi

V Fr2

∫
V
(ρ∗uj ),j xi dV − gi

V Fr2

∫
S

uj (ρ
∗ − ρ) xidSj

= − gi

V Fr2

∫
V
ρ∗uidV +

giρ

V Fr2

∫
S

uj xidSj

= − gi

Fr2
〈ρ∗ui〉 +

giρ

V Fr2

∫
S

uj xidSj . (4.6)

Here, (2.4) was used to eliminate the time derivative of the density. Integration by
parts and the divergence theorem are then applied. The final term is obtained using
the definition of the average and periodicity. Note that in general, for a particular
realization and finite V, the last surface integral term does not vanish. If (4.6) is
averaged over independent realizations, then

〈E〉,t = − gi

Fr2
〈ρ∗ui〉. (4.7)

Ergodicity has been assumed and thus the volume average of the mass flux remains
unchanged after ensemble averaging.

The rate of change of kinetic energy per unit volume is obtained by multiplying
the momentum equation (2.5) by ui and averaging:

EK,t =
gi

Fr2
〈ρ∗ui〉 + 〈puj,j 〉 − 〈ui,j τij 〉. (4.8)

The first term, proportional to the mass flux, is precisely the rate of change of
potential energy with opposite sign. The mass flux term represents the reversible
transfer of energy between potential and kinetic forms. The mass flux is the sole
mechanism by which the potential energy is converted into kinetic energy. The last
two terms are the pressure dilatation and viscous dissipation. In compressible fluid
flows, the pressure dilatation term represents the reversible transfer of energy between
the kinetic and internal energies (Blaisdell, Mansour & Reynolds 1993; Ristorcelli
1997; Livescu et al. 2002). Here, it is the gain or loss of kinetic energy through
work generated by the change of specific volume during mixing. For the simulations
considered, 〈puj,j 〉 is small except at the initial instant when it is the only non-zero
term in the equation. After this initial instant, the two most important terms become
the buoyancy production (proportional to the mass flux) and the viscous dissipation.

In contradistinction, for a Boussinesq fluid (see Appendix B) the rate of change of
potential energy is:

E,t = − gi

V Fr2

∫
V

[
ρ∗ui − 1

Re0Sc
ρ∗

,j

]
dV +

gi

V Fr2

∫
S

[
ρuj − 1

Re0Sc
ρ∗

,j

]
xidSj , (4.9)
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Figure 11. Time evolution of the terms in the kinetic energy equation (4.8) scaled by ρU 2
r /tr .

Production buoyancy term P = (gi/Fr2)〈ρ∗ui〉 upper curves, viscous term −V = − 〈ui,j τij 〉
lower curves.

while the rate of change of the kinetic energy is given by (4.8) with 〈puj,j 〉 =0.
There is an additional irreversible loss of potential energy by molecular diffusion
and additional diffusive transfer through the boundaries not present in the VD case.
The Boussinesq approximation, unlike the VD case, allows molecular diffusion in the
absence of fluid motion. While the point is generally important, it is not relevant
to the homogeneous configuration, in which the extra diffusive terms in (4.9) vanish
after ensemble averaging.

4.3. Kinetic energy budget

Figure 11 shows the evolution of the terms in the kinetic energy equation (4.8).
Similar to the evolution of the kinetic energy, the buoyancy production term increases
initially as the two fluids are accelerated, reaches a maximum and decreases as the
fluids molecularly mix. As expected, the magnitude of the peak is larger if A/Fr2

or Re0 (or commensurately Reb0) are increased (figure 11a). A similar behaviour is
obtained for the evolution of the viscous dissipation. At late times, the results are
similar for cases with the same Sc, suggesting that in the buoyancy force scaling they
are only weakly influenced by Reb0

. Since the results for cases 3Base and 1Fr with
the same A/Fr2 are close, figure 11 indicates that the mass flux itself has a weaker
dependence on the acceleration due to gravity than on the Atwood number.

The production to dissipation ratio R =P/ε shown in figure 12 indicates the highly
non-equilibrium nature of the flow. It is initially large, ranging from 24 for case 1 to
75 for case 2Re2. For clarity, the low Sc cases are not shown in figure 12, but the
results are consistent with the rest of the cases. At early times, R is very different for
the cases considered. After the energy reaches maximum, when P = ε, the production
dissipation ratios become similar, asymptoting to about a half. Apparently, a purely
decaying turbulence is never attained; there is always a production mechanism. This
is because the production is set by diffusive not viscous processes, and dissipation
tracks the production.

4.4. Favre mean and turbulent kinetic energies budgets

The VD problem is more conveniently treated using Favre averages. The definitions
are repeated here for convenience: ρŨi = 〈ρ∗u∗

i 〉. Here Ui = 0 and Ũi = ai , where
ai = 〈ρui〉/ρ. The Favre turbulent kinetic energy is ρk̃ = 1/2 Rjj where the Reynolds
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Figure 12. Production to dissipation ratio: (a) early time, (b) late time.

stresses are defined as Rij = 〈ρ∗u′′
i u

′′
i 〉 with u′′

i = u∗
i −Ũi . The relation between the Favre

turbulent kinetic energy and the kinetic energy per unit volume, EK , is ρk̃ =EK − K̃

where K̃ = ρŨiŨi/2 is the Favre mean kinetic energy. Using (2.14) and the mean
pressure gradient relation (2.17), the transport equations for K̃ and k̃ are:

K̃,t = ai

[
ρ

gi

Fr2
− P,i

]
, (4.10)

ρk̃,t = aiP,i + 〈puj,j 〉 − 〈ui,j τij 〉. (4.11)

In a Favre average setting, the energy conversion is from potential to the Favre mean
kinetic energy, K̃ , by (gi/Fr2)aiρ and then to the Favre turbulent kinetic energy, k̃,
by the production term aiP,i (figure 13).

Note that the kinetic energy can be written as EK = 1/2 (ρ〈uiui〉 + 〈ρuiui〉) and
that ρk̃ =1/2 (ρ〈uiui〉 − ρaiai + 〈ρuiui〉). For the cases considered here, ρaiai and
〈ρuiui〉 are small in comparison to ρ〈uiui〉. The kinetic energy and Favre turbulent
kinetic energy are almost equal to the kinetic energy per unit mass ρ〈uiui〉/2. While
the mass flux terms have small contributions to the Favre kinetic energies, the mass
flux is the agency by which potential energy is converted to kinetic energy. More
importantly, ai multiplies P,i , a large term, to give the transfer between Favre mean
and turbulent kinetic energies. The mass flux is probably the single most important
item to predict in low-dimensional models if one needs to capture accurately the
conversion of potential to kinetic energy. The rate of energy conversion dictates the
growth rate of the RT mixing layer, so that there is a direct connection between
the mass flux and the growth rate as observed by Cook et al. (2004), which further
emphasizes the importance of the mass flux.

4.5. Budget for the mass flux equation

Having established the importance of the mass flux, it is useful to examine (2.14) more
closely. The time evolution of the mass flux can be inferred from the kinetic energy
production term, (A/Fr2)a3ρ, shown in figure 11. Substituting for the mean pressure
gradient (2.17), the mass flux equation can be written in either of the following two
forms:

ρai,t = −〈ρv〉P,i − ρ(〈uiuj,j 〉 − 〈vp,i〉 + 〈vτij,j 〉), (4.12)

ρai,t = − ρ

1 − 〈ρv〉 (〈ρv〉 gi

Fr2
+ 〈uiuj,j 〉 − 〈vp,i〉 + 〈vτij,j 〉) . (4.13)
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Figure 14. Terms in the mass flux transport equation (2.14) normalized by Ur/tr . The positive
terms correspond to (ρ/1 − ρv)〈vp,3〉 and the negative terms to −(ρ/1 − 〈ρv〉)〈ρv〉(g3/Fr2).

The terms on the right-hand side of (4.13) are buoyancy production, velocity dilatation
and specific volume pressure gradient and stress covariances. The density specific
volume correlation is important since it controls the mass flux production. As
〈ρv〉 tracks the mixing progress, it is discussed in the companion paper on mixing
(Livescu & Ristorcelli 2007).

Figure 14 shows the two important terms in the equation, buoyancy production
and specific volume pressure gradient correlation. Neither term is zero initially and
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the mass flux is both generated and destroyed from the initial instant. Consistent with
the results above, the terms in the mass flux equation increase their magnitude with
A or Re0 or equivalently with the static initial Reynolds number Reb0. Also, similar
to the mass flux (see discussion above) the terms in figure 14 are less sensitive to
changes in Froude number than in the Atwood number (compare cases 1, 3 and 4).

The buoyancy production directly depends on the density specific volume
correlation, 〈ρv〉, which changes during the evolution of the flow. In the Boussinesq
approximation, there is no specific volume change and the mean pressure gradient
is the hydrostatic head. If that were the case here, then (4.13), which is written as
ρai,t = −P,i + ρgi/Fr2, would predict a constant mass flux. For comparison, the mass
flux equation for a Boussinesq fluid is given in (B 5). This emphasizes that in VD
turbulence, the mean pressure gradient is a dynamical variable evolving as the mixing
progresses.

5. Discussion and summary
An overview of the evolution of the buoyantly driven flow and its dependence on

various parameters is now given. Then some issues on moment closure modelling
are briefly discussed. The section ends with a short amplification of the differences
between the current simulations and the problem studied by Batchelor et al. (1992).

In this homogeneous configuration, the turbulence is initiated by the action of the
body force, increases as the buoyancy forces dominate at early times, and then decays
as the viscous forces overcome the buoyancy forces. Unlike the RT configuration,
there is no continuous supply of fresh fluid and the molecular mixing reduces the
buoyancy production at late times. For cases with the same Schmidt number, there
is an excellent collapse of the data with the time and velocity scalings that reflect a
nonlinear to buoyancy force balance:

tr =

√
Fr2/A, Ur =

√
A/Fr2, (5.1)

where Fr2 ∼ 1/g scales the gravity. In scaled time, the point where P = ε collapses
for all cases at t/tr ≈ 2.5.

(a) The initial conditions are characterized by an initial static Reynolds number,

Reb0 = Re0

√
L3

ρA/Fr2, (5.2)

which plays an important role in setting the rate of growth of the kinetic energy
and turbulent Reynolds number and the size of the kinetic energy maxima. There
appears to be a critical Reb (dependent on Sc) above which additional increase in
Reb0 has little effect on the flow. This is likely to be the case for the RT layer as well
(see Cabot & Cook 2006). For the higher-Atwood-number simulations, the fluid has
not mixed (molecularly) enough by the time the peak energy occurs and the fluid
is still non-Boussinesq. The non-Boussinesq behaviour also persists longer at higher
Schmidt numbers.

The Schmidt number also affects the magnitude of the kinetic energy maximum:
the higher the Schmidt number, the larger the peak. The Schmidt number does not
affect the time of the energy maxima.

During the early time transition period none of the usual statistics, the derivative
skewness or the scaling of the integral length scale with 
 = k3/2/ε, behave as seen in
non-buoyant fully developed turbulence. During this time, the anisotropy is largest
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and the non-equilibrium measure, the production dissipation ratio, is as high as
P/ε ∼ 70 as the flow goes through transition.

(b) At the time of kinetic energy maximum, when P = ε, the r.m.s. density
fluctuations are large and the mean pressure gradient is not hydrostatic. It is also at
this time that any unmixed pure fluid is rare and the density PDF loses its bimodal
structure as pure fluid mixes, but has not yet developed a quasi-Gaussian single peak
characteristic of long-term mixing (see Livescu & Ristorcelli 2007 for details). At this
time, the derivative skewness is approaching values taken to be symptomatic of a
fully developed cascade and the Kolmogorov zeroth law scaling of the integral length
scale with 
 = k3/2/ε becomes useful.

(c) At late time, after t/tr ≈ 2.5 the production is smaller than the dissipation and
the asymptotic decay is set by the molecular diffusion which controls the mixing
and determines the energy production. The decay occurs with an approximately
constant production dissipation ratio, P/ε ≈ 0.5. A similar equilibration of dissipation
to production occurs on the centreline of the long-time Boussinesq RT layer
(Ristorcelli & Clark 2004).

5.1. Modelling issues

The mass flux appears to be the most important quantity to predict in lower-
dimensional models to accurately simulate the highly non-equilibrium portion of the
flow evolution. The conversion of potential to kinetic energy is accomplished, at all
scales of motion, by the mass flux. An interesting question is then whether the energy
cascade has a constant flux or what an inertial range looks like. It appears likely that
special care may have to be taken with the choice and development of LES subgrid
closures.

While ‘mass flux’ connotes a transport quantity, it should be kept in mind that
in this flow the mean density gradient is zero. The mass flux is a unique dynamical
variable not related to the mean density gradient as simplistic gradient transport
models assume in self-similar turbulence flows.

For validating engineering and moment closures, the following measures appear
most useful for assessing the accuracy and utility of the modelling during the different
stages of flow evolution.

(a) The non-dimensional time at which the kinetic energy peaks and at which
P = ε, for the initial length scales chosen, is always t/tr ≈ 2.5.

(b) The early time and late time P/ε ratio.
(c) The early time overshoot and post peak relaxation of the mean pressure gradient

to the hydrostatic value.
(d) The dependence of all these parameters and the magnitude of the kinetic energy

on the initial Reb.
(e) As many applications of moment closures or ILES apply to the inviscid limit

and do not define a viscosity, the eddy turnover time, k/ε, and the turbulent eddy
viscosity, k2/ε, are given in the figures 15 and 16 for model validation.

The scaling of the integral length scale with 
 = k3/2/ε – the so-called Kolmogorov’s
zeroth law – does hold, with non-unique coefficient of proportionality, once the
turbulence starts to decay. It is not clear that the non-equilibrium nature of the flow,
the low Reynolds number or non-Boussinesq effects are responsible for the absence
of the zeroth law scaling before the decay begins. It appears to be probably due to
all three effects.
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Figure 15. Time evolution of the normalized eddy turnover time, k̃/ε.
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Figure 16. Time evolution of the normalized turbulent eddy viscosity, k̃2/ε.

The list above deals with hydrodynamical related quantities. Mixing-related
predictables are given in Livescu & Ristorcelli (2007).

5.2. Contrasting the initial-value problem with the Batchelor treatment

For the Boussinesq problem, Batchelor et al. (1992) found non-trivial similarity states
in the decay stage that depend on the infrared properties of the initial buoyancy
spectrum. At all times, the energy in the density modes with κ → 0 becomes small
(see Appendix B). Moreover, even for the large-Atwood cases, the density fluctuations
decrease at late times and the Boussinesq approximation becomes valid. Therefore,
similar infrared spectral properties might be expected in the current VD simulations.
Whether this leads to self-similar regimes seen in the Boussinesq case is not addressed
in this paper. Here, the initial density spectrum is a top hat corresponding, in physical
space, to several large blobs. As a consequence, the low-wavenumber exponent changes
in time as the lowest wavenumbers are filled with energy and arguments such as those
given in Batchelor et al. (1992) relating decay rate to the infrared exponent are
not germane. All simulations presented have the same initial spectrum of density
fluctuations and as a consequence, the well-known low-wavenumber dependence of
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the asymptotic state is likely to have been suppressed. Conclusions regarding the
similarity of the different asymptotic state reflect the dependence on the dynamical
balances of the equations and not the energy in the low-wavenumber spectra.

6. Conclusions
Simulations of the benchmark problem of homogeneous buoyantly driven VD

turbulence have allowed us to study the coupling between the scalar mixing and
hydrodynamics. The current study has been designed to have the largest mass flux
possible and is the maximally non-equilibrium flow possible. Flows with Atwood
number up to A= 0.5, density variations as large as half the mean density, ρrms =0.5ρ̄,
for Schmidt numbers 0.1 � Sc � 2 have been studied. This study has focused on the
hydrodynamics; the material mixing is studied in the companion paper (Livescu &
Ristorcelli 2007).

The simulations have been motivated by the absence of data relevant to moment
closures or LES developments in VD turbulence that capture the core nonlinear
couplings between material mixing and the fluctuating hydrodynamical field in the
absence of the complicating issues of spatial transport. In this buoyantly driven study,
the usual quadratic nonlinearities as well as new cubic nonlinearities associated with
the material mixing are important. The simulations include: (i) the highly anisotropic
non-equilibrium transition process starting at negligible Reynolds number and in
which production vastly exceeds dissipation; (ii) a nominally high-Reynolds-number
portion in which production matches dissipation; and (iii) an anisotropic decay stage
in which production is about half the dissipation. It is useful to view this benchmark
flow as characteristic of the interior of a fully developed RT layer.

The results of our study of buoyantly driven VD transition and turbulence allows
the following list of findings and generalizations.

1. The mass flux is probably the single most important dynamical quantity taht it
is necessary to predict in low-dimensional models in order to reflect the conversion of
potential to kinetic energy accurately. The aiP,i product determines the growth of the
Favre turbulent kinetic energy and thus the highly non-equilibrium transition process.
This is also the case for the VD form of the RT problem. Despite the importance of
the mass flux in setting the energetics of the flow, it does not make much contribution
to the Favre kinetic energy, Rkk . The mass flux is its own dynamical variable and not
linked to any mean flow variables as it is in simplistic gradient transport arguments
that make it proportional to the mean density gradient.

2. The mean pressure gradient in VD turbulence is not hydrostatic as it is for a
Boussinesq fluid; it is a dynamically evolving quantity. The mean pressure gradient is
intimately coupled to material mixing through the specific volume pressure correlation
(Sandoval et al. 1996; Livescu & Ristorcelli 2007). Once enough mixing has taken
place so that 〈vp,i〉 is negligible, the fluid becomes a Boussinesq fluid and the mean
pressure gradient is hydrostatic. Thus, 〈vp,i〉 is responsible for the non-Boussinesq
behaviour of the mean pressure gradient and this is most important during the
early-time transition process. The period over which the fluid is non-Boussinesq, as
measured by the density variance, can be prolonged according to the magnitude of
the Schmidt number. The period over which the fluid is non-Boussinesq, as measured
by 〈vp,i〉, does not appear as sensitive to the Schmidt number. Even during the time
the flow is non-Boussinesq, some integral quantities still seem to obey Boussinesq
scalings (e.g. the ρrms/(ρ2 −ρ1) becomes dependent on Reb0

and Sc only at early times;
at late times, Sc becomes the only parameter).
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3. There are important material diffusion effects, as made clear by the Schmidt-
number effect. In the buoyancy-nonlinear scalings, the most important Schmidt-
number effect is on the rate of dissipation of the material fluctuations and thus the
rapidity in which the fluid transitions from a VD fluid to a Boussinesq-like fluid then
to a homogeneous mixture. This point is more evident in the PDF of the material
field shown in Livescu & Ristorcelli (2007).

4. The short-time evolution and transition of the flow is dependent on the static
initial Reynolds number that sets the maximum kinetic energy attained. This is also
seen in RT flows and in the Boussinesq fluid of Batchelor et al. (1992). It is observed
that the higher the initial Reb0, the faster the mixing occurs. This is a reminder of the
effect observed in Cook et al. (2004). In scaled time, the kinetic energy maxima occur
at approximately the same time, (≈2.5), for all simulations regardless of Reb0

or Sc.
5. An improved pressure projection algorithm useful for VD flow simulations

has been constructed. The algorithm allows the computations without introducing
additional temporal discretization errors in the pressure step.

The density fluctuations are initially some 50% of the mean density for the highest-
Atwood-number case presented. The importance of the non-Boussinesq nature of
the fluid as affected by Atwood and Schmidt numbers is clearly indicated by these
‘modestly’ non-Boussinesq exploratory simulations. For the higher-Atwood-number
runs, the flow is non-Boussinesq past the peak of the kinetic energy as moderated by
the Schmidt number.

Higher-Atwood-number simulations are difficult to perform for the relatively thin
initial diffusion layers and large blob configuration considered here. The initial
diffusion layer between the fluids becomes squeezed by the motion of the pure
fluid blobs and significantly increases the resolution requirements. In any event, it
is possible to report, from a few short runs with wider initial diffusion layers, that
different flow hydrodynamics appears to occur at large Atwood numbers. This is
reminiscent of the divergence in behaviour that we see between the bubble and
spike sides observed in the RT layer for A � 0.5 in the compendium by Dimonte &
Schneider (2000). The mixing problem is also very different at low versus high Atwood
numbers (specifically radically different behaviour in light versus heavy fluids) and
this is presented and explored in Livescu & Ristorcelli (2007).

Computational resources were provided through the Institutional Computing
Project, Los Alamos National Laboratory. This work was performed under the
auspices of US Department of Energy.

Appendix A. Numerical method
The numerical method for solving the governing equations is now explained. The

method requires a solution for the pressure from the VD Poisson equation. A new
approach is derived and explained. The new method preserves the overall order of the
method and ensures that (2.6), which gives the divergence of the velocity, is ‘exactly’
satisfied.

In non-dimensional form, the continuity (in terms of the logarithm of the density)
and the fluctuating momentum transport equations are:

ln(ρ∗),t = −uj ln(ρ∗),j +
1

ReSc
ln(ρ∗),jj , (A 1)

(ρ∗ui)
′
,t = −(ρ∗uiuj ),j − p,i + τij,j +

1

Fr2
ρgi, (A 2)
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The continuity equation is integrated using a second-order-accurate Adams–Bashforth
method:

ln(ρ∗)n+1 = �t(1.5An − 0.5An−1) + O(�t3), (A 3)

where A is the right-hand side of (A 2). The fluctuating momentum equation is
rewritten as

(ρ∗ui)
′
,t = −p,i + Bi, (A 4)

and integrated from tn to tn+1

(ρ∗ui)
′ n+1 − (ρ∗ui)

′n

�t
= −p̃,i +

1

�t

∫ tn+1

tn
Bi dt, (A 5)

where p̃ =(1/�t)
∫ tn+1

tn
p dt and the last term in the equation is evaluated via the

Adams–Bashforth method:∫ tn+1

tn
Bi dt = �t(1.5Bn − 0.5Bn−1) + O(�t3). (A 6)

The fluctuating momentum equation is integrated in two steps, first without the
pressure terms:

(ρ∗ui)
′ n+1/2 = (ρ∗ui)

′ n + �t(1.5Bn − 0.5Bn−1) + O(�t3). (A 7)

In the second step, the pressure terms are added:

(ρ∗ui)
′ n+1 = (ρ∗ui)

′ n+1/2 − �tp̃,i . (A 8)

Note that summing (A 7)–(A 8) results in (A 5). The Poisson equation for pressure is
obtained by taking the divergence of (A 8):

p̃,ii = − 1

�t

[
(ρ∗ui)

′ n+1
,i − (ρ∗ui)

′ n+1/2
,i

]
. (A 9)

Equation (A 9) contains the unknown divergence of the momentum at the next
time step, which must be evaluated in order to be able to calculate the pressure.
One method, developed by McMurtry (1987), is to use the continuity equation and
write (ρui)

′ n+1,
i in terms of the time derivative of the density which is approximated

using a second-order backward difference. Such an approximation becomes unstable
at large density fluctuations as shown by Sandoval (1995). A more robust method
was developed by Sandoval (1995) and also used for RT simulations by Cook &
Dimotakis (2001). In this method, (ρui)

′ n+1
,i is expanded as:

(ρ∗ui)
′ n+1
,i =

[
(ρ∗ui)

′ n+1 + 〈ρ∗ui〉n+1
]
,i

=
(
ρ∗ n+1un+1

i

)
,i

= un+1
i ρ∗ n+1

,i − 1

Re0Sc
ρ∗ n+1(ln ρ∗ n+1),ii . (A 10)

In (A 10), the zero spatial derivative of the mean momentum is used to obtain the first
equality and (2.6) is used to derive the last equality. An expression for un+1

i is required
to close the divergence of the momentum. Following Sandoval (1995), a Taylor series
expansion is used to obtain:

un+1
i = 2un

i − un−1
i + O(�t2). (A 11)

The approximation (A 11) is unfortunately second-order accurate and could affect
the overall accuracy if a higher-order scheme is used for the first step or the mass
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conservation. There is, however, an exact alternative. Instead of using (A 11), un+1
i

can be written exactly:

un+1
i =

ρ∗ n+1un+1
i

ρ∗ n+1
=

1

ρ∗ n+1
[(ρ∗ui)

′ n+1 + 〈ρ∗ui〉n+1]. (A 12)

Equation (2.18) is used to eliminate 〈ρ∗ui〉n+1 and (A 8) to eliminate (ρ∗ui)
′ n+1 so

that un+1
i is given by

un+1
i =

1

ρ∗ n+1

[
(ρ∗ui)

′ n+1/2 − �tp̃,i − 〈vn+1[(ρ∗ui)
′ n+1/2 − �tp̃,i]〉
V n+1

]
. (A 13)

Using (A 13) in (A 10), closes exactly (ρ∗ui)
′ n+1,
,i appearing in (A 9). The numerical

Poisson equation (A 9) becomes:(
p̃,i

ρ∗ n+1

)
,i

=
1

�t

{
1

Re0Sc
(ln ρ∗ n+1),ii +

[
(ρ∗ui)

′ n+1/2

ρ∗ n+1

]
,i

−
(

1

ρ∗ n+1

)
,i

× 〈vn+1(ρ∗ui)
′ n+1/2〉

V n+1

}
+

(
1

ρ∗ n+1

)
,i

〈vn+1p̃,i〉
V n+1

. (A 14)

In Fourier modes, the equation for pressure becomes:

p̃ =
ρn+1

�tRe0Sc

− 1

�t
F−1

{
iki

k2
F

[
ρn+1

(
F−1

(
kikj

k2

[
F

(
(ρ∗ui)

′ n+1/2

ρ∗ n+1

)

− F
(

1

ρn+1

)
〈vn+1[(ρ∗ui)

′ n+1/2 − �tp̃,i]〉
V n+1

])
+ �t〈vn+1p̃,i〉

)]}
, (A 15)

where F and F−1 represent Fourier and inverse Fourier transforms. There is still a
closure problem in (A 15): the pressure appears in the angle brackets on the right-
hand side. This is resolved as follows. Take the derivative in the i direction, multiply
by the fluctuating specific volume v and average. A linear equation with known
coefficients for 〈vn+1p̃,i〉 is obtained, whose solution is used to close the right-hand
side of (A 15) which allows the determination of the instantaneous pressure. This
approach preserves the order of accuracy of the first integration step, (A 7). As we
might expect, the procedure increases the computational effort. For the Adams–
Bashforth method used here, the procedure is more robust than the approximation
(A 11) at large Atwood numbers. If the condition Ui = 0 is not imposed and the full
momentum equation integrated, as is done in non-periodic VD flows, the Poisson
equation (A 14) becomes:(

p̃,i

ρ∗ n+1

)
,i

=
1

�t

{
1

Re0Sc
(ln ρ∗ n+1),ii +

[
(ρ∗u∗

i )
n+1/2

ρ∗ n+1

]
,i

}
. (A 16)

The computational effort necessary to solve (A 16) is close to that required by the
usual Poisson equation using the (A 11) truncation.

Appendix B. Small Atwood limit
For small Atwood numbers, the Boussinesq approximation is usually used for RT

calculations. The approximation assumes that the density variations are small (ρ � ρ)
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and affect the flow through the buoyancy term only (Batchelor et al. 1992). Density
variations can be seen as linearly depending on some conserved scalar property of
the fluid ρ = βΦ (where Φ can be, for example, concentration or temperature) and
the Boussinesq equations are:

u∗
j,j = 0, (B 1)

u∗
i,t + u∗

ju
∗
i,j = −p,i +

1

Re0

u∗
,jj +

1

Fr2
ρgi, (B 2)

ρ,t + u∗
jρ,j =

1

Re0M
ρ,jj , (B 3)

where M is the non-dimensional number which expresses the ratio of the diffusivity of
momentum and diffusivity of Φ (e.g. M = Pr if Φ is the temperature). Equation (B 1)
follows from the continuity equation, if the quadratic diffusive term is neglected
compared to the right-hand side in (B 3), (B 2) is the momentum equation, and (B 3)
is the transport equation for the scalar Φ with Φ replaced by ρ/β . In the momentum
equation, the mean pressure gradient is assumed equal to the pressure head (1/Fr2)ρgi

and was subtracted from the buoyancy term. In order to obtain (B 2) from (2.5), first
(2.5) is divided by ρ∗ after the left-hand side is expanded with the use of the continuity
equation. Then, it is assumed that 1/ρ∗ = 1/ρ(1−ρ/ρ)+· · · ≈ 1/ρ. This is a zero-order
approximation in ρ/ρ which also implies V ≈ 1/ρ and 1/V 〈v(p,i −τij,j )〉 � (p,i −τij,j ).
By comparing (B 1) and (2.6), it can be seen that the velocity divergence remains non-
zero, even if (B 3) is assumed valid. Nevertheless, for large Re0Sc, it can be assumed
that the contributions from the dilatational component to the convective term and
the viscous stress tensor are negligible in comparison to those of the solenoidal part,
so that replacing the mean pressure gradient given by (2.17) in (2.5) leads to (B 2).

In the continuity equation, the term −ρ,jρ,j /ρ
∗ is neglected in comparison to ρ,jj .

This is a valid approximation for small density fluctuations and a smooth density
field. If, however, the density field is not smooth, there may be regions in the flow
where the approximation is not valid. In spectral space, the approximation above
becomes valid, even at large At numbers, at both ends of the buoyancy spectrum
where the energy content decreases to zero. The high-wavenumber range, however,
presents an additional complication since the dilatational kinetic energy, as it is set
by density gradients, can become comparable with the solenoidal part.

Also note that the VD continuity equation can be written as an advection–
diffusion equation with an effective velocity equal to the solenoidal velocity
u

eff
i = ui + (1/Re0Sc)(ρ∗

,i/ρ
∗) as the advection velocity. In this case, the equation

is formally the same as the continuity equation for the Boussinesq approximation
with advective velocity u

eff
i .

For a Boussinesq fluid, the rate of change of potential energy is:

E,t = E∗
p,t − gi

Fr2

∫
S

uj (ρ
∗ − ρ) xidSj

=
gi

Fr2

∫
V

[
ρ∗

,j uj +
1

Re0Sc
ρ∗

,jj

]
xi dV − gi

Fr2

∫
S

uj (ρ
∗ − ρ) xidSj

= − gi

Fr2

∫
V

[
ρ∗ui − 1

Re0Sc
ρ∗

,j

]
dV +

gi

Fr2

∫
S

[
ρuj − 1

Re0Sc
ρ∗

,j

]
xidSj . (B 4)

This formula could be derived directly from the VD result (4.6) by splitting the
velocity into solenoidal and dilatational parts. Like the VD case, the potential energy



Variable-density turbulence 71

is converted into kinetic energy by a term proportional to the mass flux. However,
unlike the VD case (4.13), the production of the mass flux is mediated by the density
variance, as:

ρai,t =
〈ρ2〉gi

Fr2
− 〈ρp,i〉 −

(
1

Re0

+
1

Re0Sc

)
〈ρ,jui,j 〉. (B 5)
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